Using alcohol consumption diary data from an internet intervention for outcome and predictive modeling: a validation and machine learning study

Author:

Lindner PhilipORCID,Johansson Magnus,Gajecki Mikael,Berman Anne H.

Abstract

Abstract Background Alcohol use disorder (AUD) is highly prevalent and presents a large treatment gap. Self-help internet interventions are an attractive approach to lowering thresholds for seeking help and disseminating evidence-based programs at scale. Internet interventions for AUD however suffer from high attrition and since continuous outcome measurements are uncommon, little is known about trajectories and processes. The current study investigates whether data from a non-mandatory alcohol consumption diary, common in internet interventions for AUD, approximates drinks reported at follow-up, and whether data from the first half of the intervention predict treatment success. Methods N = 607 participants enrolled in a trial of online self-help for AUD, made an entry in the non-mandatory consumption diary (total of 9117 entries), and completed the follow-up assessment. Using multiple regression and a subset of calendar data overlapping with the follow-up, scaling factors were derived to account for missing entries per participant and week. Generalized estimating equations with an inverse time predictor were then used to calculate point-estimates of drinks per week at follow-up, the confidence intervals of which were compared to that from the measurement at follow-up. Next, calendar data form the first half of the intervention were retained and summary functions used to create 18 predictors for random forest machine learning models, the classification accuracies of which were ultimately estimated using nested cross-validation. Results While the raw calendar data substantially underestimated drinks reported at follow-up, the confidence interval of the trajectory-derived point-estimate from the adjusted data overlapped with the confidence interval of drinks reported at follow-up. Machine learning models achieved prediction accuracies of 64% (predicting non-hazardous drinking) and 48% (predicting AUD severity decrease), in both cases with higher sensitivity than specificity. Conclusions Data from a non-mandatory alcohol consumption diary, adjusted for missing entries, approximates follow-up data at a group level, suggesting that such data can be used to reveal trajectories and processes during treatment and possibly be used to impute missing follow-up data. At an individual level, however, calendar data from the first half of the intervention did not have high predictive accuracy, presumable due to a high rate of missing data and unclear missing mechanisms.

Funder

Vetenskapsrådet

AFA Försäkring

Systembolaget Aktiebolag

Centre for Psychiatry Research

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3