Abstract
Abstract
Background
Machine learning (ML) holds the promise of becoming an essential tool for utilising the increasing amount of clinical data available for analysis and clinical decision support. However, the lack of trust in the models has limited the acceptance of this technology in healthcare. This mistrust is often credited to the shortage of model explainability and interpretability, where the relationship between the input and output of the models is unclear. Improving trust requires the development of more transparent ML methods.
Methods
In this paper, we use the publicly available eICU database to construct a number of ML models before examining their internal behaviour with SHapley Additive exPlanations (SHAP) values. Our four models predicted hospital mortality in ICU patients using a selection of the same features used to calculate the APACHE IV score and were based on random forest, logistic regression, naive Bayes, and adaptive boosting algorithms.
Results
The results showed the models had similar discriminative abilities and mostly agreed on feature importance while calibration and impact of individual features differed considerably and did in multiple cases not correspond to common medical theory.
Conclusions
We already know that ML models treat data differently depending on the underlying algorithm. Our comparative analysis visualises implications of these differences and their importance in a healthcare setting. SHAP value analysis is a promising method for incorporating explainability in model development and usage and might yield better and more trustworthy ML models in the future.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Epidemiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献