Moving beyond the classic difference-in-differences model: a simulation study comparing statistical methods for estimating effectiveness of state-level policies

Author:

Griffin Beth Ann,Schuler Megan S.,Stuart Elizabeth A.,Patrick Stephen,McNeer Elizabeth,Smart Rosanna,Powell David,Stein Bradley D.,Schell Terry L.,Pacula Rosalie Liccardo

Abstract

Abstract Background Reliable evaluations of state-level policies are essential for identifying effective policies and informing policymakers’ decisions. State-level policy evaluations commonly use a difference-in-differences (DID) study design; yet within this framework, statistical model specification varies notably across studies. More guidance is needed about which set of statistical models perform best when estimating how state-level policies affect outcomes. Methods Motivated by applied state-level opioid policy evaluations, we implemented an extensive simulation study to compare the statistical performance of multiple variations of the two-way fixed effect models traditionally used for DID under a range of simulation conditions. We also explored the performance of autoregressive (AR) and GEE models. We simulated policy effects on annual state-level opioid mortality rates and assessed statistical performance using various metrics, including directional bias, magnitude bias, and root mean squared error. We also reported Type I error rates and the rate of correctly rejecting the null hypothesis (e.g., power), given the prevalence of frequentist null hypothesis significance testing in the applied literature. Results Most linear models resulted in minimal bias. However, non-linear models and population-weighted versions of classic linear two-way fixed effect and linear GEE models yielded considerable bias (60 to 160%). Further, root mean square error was minimized by linear AR models when we examined crude mortality rates and by negative binomial models when we examined raw death counts. In the context of frequentist hypothesis testing, many models yielded high Type I error rates and very low rates of correctly rejecting the null hypothesis (< 10%), raising concerns of spurious conclusions about policy effectiveness in the opioid literature. When considering performance across models, the linear AR models were optimal in terms of directional bias, root mean squared error, Type I error, and correct rejection rates. Conclusions The findings highlight notable limitations of commonly used statistical models for DID designs, which are widely used in opioid policy studies and in state policy evaluations more broadly. In contrast, the optimal model we identified--the AR model--is rarely used in state policy evaluation. We urge applied researchers to move beyond the classic DID paradigm and adopt use of AR models.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3