Abstract
Abstract
Background
In pairwise meta-analysis, the contribution of each study to the pooled estimate is given by its weight, which is based on the inverse variance of the estimate from that study. For network meta-analysis (NMA), the contribution of direct (and indirect) evidence is easily obtained from the diagonal elements of a hat matrix. It is, however, not fully clear how to generalize this to the percentage contribution of each study to a NMA estimate.
Methods
We define the importance of each study for a NMA estimate by the reduction of the estimate’s variance when adding the given study to the others. An equivalent interpretation is the relative loss in precision when the study is left out. Importances are values between 0 and 1. An importance of 1 means that the study is an essential link of the pathway in the network connecting one of the treatments with another.
Results
Importances can be defined for two-stage and one-stage NMA. These numbers in general do not add to one and thus cannot be interpreted as ‘percentage contributions’. After briefly discussing other available approaches, we question whether it is possible to obtain unique percentage contributions for NMA.
Conclusions
Importances generalize the concept of weights in pairwise meta-analysis in a natural way. Moreover, they are uniquely defined, easily calculated, and have an intuitive interpretation. We give some real examples for illustration.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Epidemiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献