Selecting a randomization method for a multi-center clinical trial with stochastic recruitment considerations

Author:

Sverdlov OleksandrORCID,Ryeznik YevgenORCID,Anisimov VolodymyrORCID,Kuznetsova Olga M.ORCID,Knight RuthORCID,Carter KerstineORCID,Drescher Sonja,Zhao Wenle

Abstract

Abstract Background The design of a multi-center randomized controlled trial (RCT) involves multiple considerations, such as the choice of the sample size, the number of centers and their geographic location, the strategy for recruitment of study participants, amongst others. There are plenty of methods to sequentially randomize patients in a multi-center RCT, with or without considering stratification factors. The goal of this paper is to perform a systematic assessment of such randomization methods for a multi-center 1:1 RCT assuming a competitive policy for the patient recruitment process. Methods We considered a Poisson-gamma model for the patient recruitment process with a uniform distribution of center activation times. We investigated 16 randomization methods (4 unstratified, 4 region-stratified, 4 center-stratified, 3 dynamic balancing randomization (DBR), and a complete randomization design) to sequentially randomize $$n=500$$ n = 500 patients. Statistical properties of the recruitment process and the randomization procedures were assessed using Monte Carlo simulations. The operating characteristics included time to complete recruitment, number of centers that recruited a given number of patients, several measures of treatment imbalance and estimation efficiency under a linear model for the response, the expected proportions of correct guesses under two different guessing strategies, and the expected proportion of deterministic assignments in the allocation sequence. Results Maximum tolerated imbalance (MTI) randomization methods such as big stick design, Ehrenfest urn design, and block urn design result in a better balance–randomness tradeoff than the conventional permuted block design (PBD) with or without stratification. Unstratified randomization, region-stratified randomization, and center-stratified randomization provide control of imbalance at a chosen level (trial, region, or center) but may fail to achieve balance at the other two levels. By contrast, DBR does a very good job controlling imbalance at all 3 levels while maintaining the randomized nature of treatment allocation. Adding more centers into the study helps accelerate the recruitment process but at the expense of increasing the number of centers that recruit very few (or no) patients—which may increase center-level imbalances for center-stratified and DBR procedures. Increasing the block size or the MTI threshold(s) may help obtain designs with improved randomness–balance tradeoff. Conclusions The choice of a randomization method is an important component of planning a multi-center RCT. Dynamic balancing randomization with carefully chosen MTI thresholds could be a very good strategy for trials with the competitive policy for patient recruitment.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3