MSMpred: interactive modelling and prediction of individual evolution via multistate models

Author:

Garmendia Bergés LeireORCID,Cortés Martínez Jordi,Gómez Melis Guadalupe,

Abstract

Abstract Background Modelling the course of a disease regarding severe events and identifying prognostic factors is of great clinical relevance. Multistate models (MSM) can be used to describe diseases or processes that change over time using different states and the transitions between them. Specifically, they are useful to analyse a disease with an increasing degree of severity, that may precede death. The complexity of these models changes depending on the number of states and transitions taken into account. Due to that, a web tool has been developed making easier to work with those models. Results MSMpred is a web tool created with the shiny package that has two main features: 1) to allow to fit a MSM from specific data; 2) to predict the clinical evolution for a given subject. To fit the model, the data to be analysed must be upload in a prespecified format. Then, the user has to define the states and transitions as well as the covariates (e.g., age or gender) involved in each transition. From this information, the app returns histograms or barplots, as appropriate, to represent the distributions of the selected covariates and boxplots to show the patient’ length of stay (for uncensored data) in each state. To make predictions, the values of selected covariates from a new subject at baseline has to be provided. From these inputs, the app provides some indicators of the subject’s evolution such as the probability of 30-day death or the most likely state at a fixed time. Furthermore, visual representations (e.g., the stacked transition probabilities plot) are given to make predictions more understandable. Conclusions MSMpred is an intuitive and visual app that eases the work of biostatisticians and facilitates to the medical personnel the interpretation of MSMs.

Funder

Departament de Salut, Generalitat de Catalunya

Ministerio de Ciencia e Innovación

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3