Modeling adaptive response profiles in a vaccine clinical trial

Author:

Hasdemir DicleORCID,van den Berg Robert A.,van Kampen Antoine,Smilde Age K.

Abstract

Abstract Background Vaccine clinical studies typically provide time-resolved data on adaptive response read-outs in response to the administration of that particular vaccine to a cohort of individuals. However, modeling such data is challenged by the properties of these time-resolved profiles such as non-linearity, scarcity of measurement points, scheduling of the vaccine at multiple time points. Linear Mixed Models (LMM) are often used for the analysis of longitudinal data but their use in these time-resolved immunological data is not common yet. Apart from the modeling challenges mentioned earlier, selection of the optimal model by using information-criterion-based measures is far from being straight-forward. The aim of this study is to provide guidelines for the application and selection of LMMs that deal with the challenging characteristics of the typical data sets in the field of vaccine clinical studies. Methods We used antibody measurements in response to Hepatitis-B vaccine with five different adjuvant formulations for demonstration purposes. We built piecewise-linear, piecewise-quadratic and cubic models with transformations of the axes with pre-selected or optimized knot locations where time is a numerical variable. We also investigated models where time is categorical and random effects are shared intercepts between different measurement points. We compared all models by using Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Deviance Information Criterion (DIC), variations of conditional AIC and by visual inspection of the model fit in the light of prior biological information. Results There are various ways of dealing with the challenges of the data which have their own advantages and disadvantages. We explain these in detail here. Traditional information-criteria-based measures work well for the coarse selection of the model structure and complexity, however are not efficient at fine tuning of the complexity level of the random effects. Conclusions We show that common statistical measures for optimal model complexity are not sufficient. Rather, explicitly accounting for model purpose and biological interpretation is needed to arrive at relevant models. Trial Registration Clinical trial registration number for this study: NCT00805389, date of registration: December 9, 2008 (pro-active registration).

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3