Evaluation of a geriatrics primary care model using prospective matching to guide enrollment

Author:

Smith Valerie A.,Van Houtven Courtney Harold,Lindquist Jennifer H.,Hastings Susan N.

Abstract

Abstract Background Few definitive guidelines exist for rigorous large-scale prospective evaluation of nonrandomized programs and policies that require longitudinal primary data collection. In Veterans Affairs (VA) we identified a need to understand the impact of a geriatrics primary care model (referred to as GeriPACT); however, randomization of patients to GeriPACT vs. a traditional PACT was not feasible because GeriPACT has been rolled out nationally, and the decision to transition from PACT to GeriPACT is made jointly by a patient and provider. We describe our study design used to evaluate the comparative effectiveness of GeriPACT compared to a traditional primary care model (referred to as PACT) on patient experience and quality of care metrics. Methods We used prospective matching to guide enrollment of GeriPACT-PACT patient dyads across 57 VA Medical Centers. First, we identified matches based an array of administratively derived characteristics using a combination of coarsened exact and distance function matching on 11 identified key variables that may function as confounders. Once a GeriPACT patient was enrolled, matched PACT patients were then contacted for recruitment using pre-assigned priority categories based on the distance function; if eligible and consented, patients were enrolled and followed with telephone surveys for 18 months. Results We successfully enrolled 275 matched dyads in near real-time, with a median time of 7 days between enrolling a GeriPACT patient and a closely matched PACT patient. Standardized mean differences of < 0.2 among nearly all baseline variables indicates excellent baseline covariate balance. Exceptional balance on survey-collected baseline covariates not available at the time of matching suggests our procedure successfully controlled many known, but administratively unobserved, drivers of entrance to GeriPACT. Conclusions We present an important process to prospectively evaluate the effects of different treatments when randomization is infeasible and provide guidance to researchers who may be interested in implementing a similar approach. Rich matching variables from the pre-treatment period that reflect treatment assignment mechanisms create a high quality comparison group from which to recruit. This design harnesses the power of national administrative data coupled with collection of patient reported outcomes, enabling rigorous evaluation of non-randomized programs or policies.

Funder

U.S. Department of Veterans Affairs

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3