Impact of a non-constant baseline hazard on detection of time-dependent treatment effects: a simulation study

Author:

Jachno Kim,Heritier Stephane,Wolfe Rory

Abstract

Abstract Background Non-proportional hazards are common with time-to-event data but the majority of randomised clinical trials (RCTs) are designed and analysed using approaches which assume the treatment effect follows proportional hazards (PH). Recent advances in oncology treatments have identified two forms of non-PH of particular importance - a time lag until treatment becomes effective, and an early effect of treatment that ceases after a period of time. In sample size calculations for treatment effects on time-to-event outcomes where information is based on the number of events rather than the number of participants, there is crucial importance in correct specification of the baseline hazard rate amongst other considerations. Under PH, the shape of the baseline hazard has no effect on the resultant power and magnitude of treatment effects using standard analytical approaches. However, in a non-PH context the appropriateness of analytical approaches can depend on the shape of the underlying hazard. Methods A simulation study was undertaken to assess the impact of clinically plausible non-constant baseline hazard rates on the power, magnitude and coverage of commonly utilized regression-based measures of treatment effect and tests of survival curve difference for these two forms of non-PH used in RCTs with time-to-event outcomes. Results In the presence of even mild departures from PH, the power, average treatment effect size and coverage were adversely affected. Depending on the nature of the non-proportionality, non-constant event rates could further exacerbate or somewhat ameliorate the losses in power, treatment effect magnitude and coverage observed. No single summary measure of treatment effect was able to adequately describe the full extent of a potentially time-limited treatment benefit whilst maintaining power at nominal levels. Conclusions Our results show the increased importance of considering plausible potentially non-constant event rates when non-proportionality of treatment effects could be anticipated. In planning clinical trials with the potential for non-PH, even modest departures from an assumed constant baseline hazard could appreciably impact the power to detect treatment effects depending on the nature of the non-PH. Comprehensive analysis plans may be required to accommodate the description of time-dependent treatment effects.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3