Hierarchical network meta-analysis models for synthesis of evidence from randomised and non-randomised studies

Author:

Hussein Humaira,Abrams Keith R.,Gray Laura J.,Anwer Sumayya,Dias Sofia,Bujkiewicz Sylwia

Abstract

Abstract Background With the increased interest in the inclusion of non-randomised data in network meta-analyses (NMAs) of randomised controlled trials (RCTs), analysts need to consider the implications of the differences in study designs as such data can be prone to increased bias due to the lack of randomisation and unmeasured confounding. This study aims to explore and extend a number of NMA models that account for the differences in the study designs, assessing their impact on the effect estimates and uncertainty. Methods Bayesian random-effects meta-analytic models, including naïve pooling and hierarchical models differentiating between the study designs, were extended to allow for the treatment class effect and accounting for bias, with further extensions allowing for bias terms to vary depending on the treatment class. Models were applied to an illustrative example in type 2 diabetes; using data from a systematic review of RCTs and non-randomised studies of two classes of glucose-lowering medications: sodium-glucose co-transporter 2 inhibitors and glucagon-like peptide-1 receptor agonists. Results Across all methods, the estimated mean differences in glycated haemoglobin after 24 and 52 weeks remained similar with the inclusion of observational data. The uncertainty around these estimates reduced when conducting naïve pooling, compared to NMA of RCT data alone, and remained similar when applying hierarchical model allowing for class effect. However, the uncertainty around these effect estimates increased when fitting hierarchical models allowing for the differences in study design. The impact on uncertainty varied between treatments when applying the bias adjustment models. Hierarchical models and bias adjustment models all provided a better fit in comparison to the naïve-pooling method. Conclusions Hierarchical and bias adjustment NMA models accounting for study design may be more appropriate when conducting a NMA of RCTs and observational studies. The degree of uncertainty around the effectiveness estimates varied depending on the method but use of hierarchical models accounting for the study design resulted in increased uncertainty. Inclusion of non-randomised data may, however, result in inferences that are more generalisable and the models accounting for the differences in the study design allow for more detailed and appropriate modelling of complex data, preventing overly optimistic conclusions.

Funder

Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3