Can supervised deep learning architecture outperform autoencoders in building propensity score models for matching?

Author:

Karim Mohammad Ehsanul

Abstract

Abstract Purpose Propensity score matching is vital in epidemiological studies using observational data, yet its estimates relies on correct model-specification. This study assesses supervised deep learning models and unsupervised autoencoders for propensity score estimation, comparing them with traditional methods for bias and variance accuracy in treatment effect estimations. Methods Utilizing a plasmode simulation based on the Right Heart Catheterization dataset, under a variety of settings, we evaluated (1) a supervised deep learning architecture and (2) an unsupervised autoencoder, alongside two traditional methods: logistic regression and a spline-based method in estimating propensity scores for matching. Performance metrics included bias, standard errors, and coverage probability. The analysis was also extended to real-world data, with estimates compared to those obtained via a double robust approach. Results The analysis revealed that supervised deep learning models outperformed unsupervised autoencoders in variance estimation while maintaining comparable levels of bias. These results were supported by analyses of real-world data, where the supervised model’s estimates closely matched those derived from conventional methods. Additionally, deep learning models performed well compared to traditional methods in settings where exposure was rare. Conclusion Supervised deep learning models hold promise in refining propensity score estimations in epidemiological research, offering nuanced confounder adjustment, especially in complex datasets. We endorse integrating supervised deep learning into epidemiological research and share reproducible codes for widespread use and methodological transparency.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3