Statistical reanalysis of vascular event outcomes in primary and secondary vascular prevention trials

Author:

Woodhouse Lisa J.,Montgomery Alan A.,Mant Jonathan,Davis Barry R.,Algra Ale,Mas Jean-Louis,Staessen Jan A.,Thijs Lutgarde,Tonkin Andrew,Kirby Adrienne,Pocock Stuart J.,Chalmers John,Hankey Graeme J.,Spence J. David,Sandercock Peter,Diener Hans-Christoph,Uchiyama Shinichiro,Sprigg Nikola,Bath Philip M.

Abstract

Abstract Background Vascular prevention trials typically use dichotomous event outcomes although this may be inefficient statistically and gives no indication of event severity. We assessed whether ordinal outcomes would be more efficient and how to best analyse them. Methods Chief investigators of vascular prevention randomised controlled trials that showed evidence of either benefit or harm, or were included in a systematic review that overall showed benefit or harm, shared individual participant data from their trials. Ordered categorical versions of vascular event outcomes (such as stroke and myocardial infarction) were analysed using 15 statistical techniques and their results then ranked, with the result with the smallest p-value given the smallest rank. Friedman and Duncan’s multiple range tests were performed to assess differences between tests by comparing the average ranks for each statistical test. Results Data from 35 trials (254,223 participants) were shared with the collaboration. 13 trials had more than two treatment arms, resulting in 59 comparisons. Analysis approaches (Mann Whitney U, ordinal logistic regression, multiple regression, bootstrapping) that used ordinal outcome data had a smaller average rank and therefore appeared to be more efficient statistically than those that analysed the original binary outcomes. Conclusions Ordinal vascular outcome measures appear to be more efficient statistically than binary outcomes and provide information on the severity of event. We suggest a potential role for using ordinal outcomes in vascular prevention trials.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3