Two-stage Bayesian hierarchical modeling for blinded and unblinded safety monitoring in randomized clinical trials

Author:

Liu Junhao,Wick Jo,Martin Renee’ H.,Meinzer Caitlyn,Roy Dooti,Gajewski ByronORCID

Abstract

Abstract Background Monitoring and reporting of drug safety during a clinical trial is essential to its success. More recent attention to drug safety has encouraged statistical methods development for monitoring and detecting potential safety signals. This paper investigates the potential impact of the process of the blinded investigator identifying a potential safety signal, which should be further investigated by the Data and Safety Monitoring Board with an unblinded safety data analysis. Methods In this paper, two-stage Bayesian hierarchical models are proposed for safety signal detection following a pre-specified set of interim analyses that are applied to efficacy. At stage 1, a hierarchical blinded model uses blinded safety data to detect a potential safety signal and at stage 2, a hierarchical logistic model is applied to confirm the signal with unblinded safety data. Results Any interim safety monitoring analysis is usually scheduled via negotiation between the trial sponsor and the Data and Safety Monitoring Board. The proposed safety monitoring process starts once 53 subjects have been enrolled into an eight-arm phase II clinical trial for the first interim analysis. Operating characteristics describing the performance of this proposed workflow are investigated using simulations based on the different scenarios. Conclusions The two-stage Bayesian safety procedure in this paper provides a statistical view to monitor safety during the clinical trials. The proposed two-stage monitoring model has an excellent accuracy of detecting and flagging a potential safety signal at stage 1, and with the most important feature that further action at stage 2 could confirm the safety issue.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3