Author:
Xu Jiaqin,Wei Kecheng,Wang Ce,Huang Chen,Xue Yaxin,Zhang Rui,Qin Guoyou,Yu Yongfu
Abstract
Abstract
Background
Estimating the average effect of a treatment, exposure, or intervention on health outcomes is a primary aim of many medical studies. However, unbalanced covariates between groups can lead to confounding bias when using observational data to estimate the average treatment effect (ATE). In this study, we proposed an estimator to correct confounding bias and provide multiple protection for estimation consistency.
Methods
With reference to the kernel function-based double-index propensity score (Ker.DiPS) estimator, we proposed the artificial neural network-based multi-index propensity score (ANN.MiPS) estimator. The ANN.MiPS estimator employed the artificial neural network to estimate the MiPS that combines the information from multiple candidate models for propensity score and outcome regression. A Monte Carlo simulation study was designed to evaluate the performance of the proposed ANN.MiPS estimator. Furthermore, we applied our estimator to real data to discuss its practicability.
Results
The simulation study showed the bias of the ANN.MiPS estimators is very small and the standard error is similar if any one of the candidate models is correctly specified under all evaluated sample sizes, treatment rates, and covariate types. Compared to the kernel function-based estimator, the ANN.MiPS estimator usually yields smaller standard error when the correct model is incorporated in the estimator. The empirical study indicated the point estimation for ATE and its bootstrap standard error of the ANN.MiPS estimator is stable under different model specifications.
Conclusions
The proposed estimator extended the combination of information from two models to multiple models and achieved multiply robust estimation for ATE. Extra efficiency was gained by our estimator compared to the kernel-based estimator. The proposed estimator provided a novel approach for estimating the causal effects in observational studies.
Funder
National Natural Science Foundation of China
Shanghai Special Program: Clinical Multidisciplinary Treatment System and Systems Epidemiology Research, and Shanghai Municipal Science and Technology Major Project
Shanghai Rising-Star Program
Shanghai Municipal Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Epidemiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献