User engagement in clinical trials of digital mental health interventions: a systematic review

Author:

Elkes Jack,Cro Suzie,Batchelor Rachel,O’Connor Siobhan,Yu Ly-Mee,Bell Lauren,Harris Victoria,Sin Jacqueline,Cornelius Victoria

Abstract

Abstract Introduction Digital mental health interventions (DMHIs) overcome traditional barriers enabling wider access to mental health support and allowing individuals to manage their treatment. How individuals engage with DMHIs impacts the intervention effect. This review determined whether the impact of user engagement was assessed in the intervention effect in Randomised Controlled Trials (RCTs) evaluating DMHIs targeting common mental disorders (CMDs). Methods This systematic review was registered on Prospero (CRD42021249503). RCTs published between 01/01/2016 and 17/09/2021 were included if evaluated DMHIs were delivered by app or website; targeted patients with a CMD without non-CMD comorbidities (e.g., diabetes); and were self-guided. Databases searched: Medline; PsycInfo; Embase; and CENTRAL. All data was double extracted. A meta-analysis compared intervention effect estimates when accounting for engagement and when engagement was ignored. Results We identified 184 articles randomising 43,529 participants. Interventions were delivered predominantly via websites (145, 78.8%) and 140 (76.1%) articles reported engagement data. All primary analyses adopted treatment policy strategies, ignoring engagement levels. Only 19 (10.3%) articles provided additional intervention effect estimates accounting for user engagement: 2 (10.5%) conducted a complier-average-causal effect (CACE) analysis (principal stratum strategy) and 17 (89.5%) used a less-preferred per-protocol (PP) population excluding individuals failing to meet engagement criteria (estimand strategies unclear). Meta-analysis for PP estimates, when accounting for user engagement, changed the standardised effect to -0.18 95% CI (-0.32, -0.04) from − 0.14 95% CI (-0.24, -0.03) and sample sizes reduced by 33% decreasing precision, whereas meta-analysis for CACE estimates were − 0.19 95% CI (-0.42, 0.03) from − 0.16 95% CI (-0.38, 0.06) with no sample size decrease and less impact on precision. Discussion Many articles report user engagement metrics but few assessed the impact on the intervention effect missing opportunities to answer important patient centred questions for how well DMHIs work for engaged users. Defining engagement in this area is complex, more research is needed to obtain ways to categorise this into groups. However, the majority that considered engagement in analysis used approaches most likely to induce bias.

Funder

NIHR Doctoral Fellowship

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3