Author:
Bae Eun Bit,Nam Sejin,Lee Sungin,Ahn Sun-Ju
Abstract
Abstract
Background
Biotechnology in genomics, such as sequencing devices and gene quantification software, has proliferated and been applied to clinical settings. However, the lack of standards applicable to it poses practical problems in interoperability and reusability of the technology across various application domains. This study aims to visualize and identify the standard trends in clinical genomics and to suggest areas on which standardization efforts must focus.
Methods
Of 16,538 articles retrieved from PubMed, published from 1975 to 2020, using search keywords “genomics and standard” and “clinical genomic sequence and standard”, terms were extracted from the abstracts and titles of 15,855 articles. Our analysis includes (1) network analysis of full phases (2) period analysis with five phases; (3) statistical analysis; (4) content analysis.
Results
Our research trend showed an increasing trend from 2003, years marked by the completion of the human genome project (2003). The content analysis showed that keywords related to such concepts as gene types for analysis, and analysis techniques were increased in phase 3 when US-FDA first approved the next-generation sequencer. During 2017–2019, oncology-relevant terms were clustered and contributed to the increasing trend in phase 4 of the content analysis. In the statistical analysis, all the categories showed high regression values (R2 > 0.586) throughout the whole analysis period and phase-based statistical analysis showed significance only in the Genetics terminology category (P = .039*) at phase 4.
Conclusions
Through comprehensive trend analysis from our study, we provided the trend shifts and high-demand items in standardization for clinical genetics.
Funder
Ministry of Trade, Industry and Energy
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Epidemiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Technology for Studying Multi-omics;Multi-Omics Analysis of the Human Microbiome;2024