Abstract
Abstract
Background
Early screening and accurately identifying Acute Appendicitis (AA) among patients with undifferentiated symptoms associated with appendicitis during their emergency visit will improve patient safety and health care quality. The aim of the study was to compare models that predict AA among patients with undifferentiated symptoms at emergency visits using both structured data and free-text data from a national survey.
Methods
We performed a secondary data analysis on the 2005-2017 United States National Hospital Ambulatory Medical Care Survey (NHAMCS) data to estimate the association between emergency department (ED) patients with the diagnosis of AA, and the demographic and clinical factors present at ED visits during a patient’s ED stay. We used binary logistic regression (LR) and random forest (RF) models incorporating natural language processing (NLP) to predict AA diagnosis among patients with undifferentiated symptoms.
Results
Among the 40,441 ED patients with assigned International Classification of Diseases (ICD) codes of AA and appendicitis-related symptoms between 2005 and 2017, 655 adults (2.3%) and 256 children (2.2%) had AA. For the LR model identifying AA diagnosis among adult ED patients, the c-statistic was 0.72 (95% CI: 0.69–0.75) for structured variables only, 0.72 (95% CI: 0.69–0.75) for unstructured variables only, and 0.78 (95% CI: 0.76–0.80) when including both structured and unstructured variables. For the LR model identifying AA diagnosis among pediatric ED patients, the c-statistic was 0.84 (95% CI: 0.79–0.89) for including structured variables only, 0.78 (95% CI: 0.72–0.84) for unstructured variables, and 0.87 (95% CI: 0.83–0.91) when including both structured and unstructured variables. The RF method showed similar c-statistic to the corresponding LR model.
Conclusions
We developed predictive models that can predict the AA diagnosis for adult and pediatric ED patients, and the predictive accuracy was improved with the inclusion of NLP elements and approaches.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Epidemiology
Reference56 articles.
1. Mahajan P, Basu T, Pai C-W, et al. Factors associated with potentially missed diagnosis of appendicitis in the emergency department. JAMA Netw Open. 2020;3(3):e200612.
2. Brown TW, McCarthy ML, Kelen GD, Levy F. An epidemiologic study of closed emergency department malpractice claims in a national database of physician malpractice insurers. Acad Emerg Med. 2010;17(5):553–60.
3. Selbst SM, Friedman MJ, Singh SB. Epidemiology and etiology of malpractice lawsuits involving children in US emergency departments and urgent care centers. Pediatr Emerg Care. 2005;21(3):165–9.
4. Ahmed HO, Muhedin R, Boujan A, Aziz AH, Muhamad Abdulla A, Hardi RA, et al. A five-year longitudinal observational study in morbidity and mortality of negative appendectomy in Sulaimani teaching Hospital/Kurdistan Region/Iraq. Sci Rep. 2020;10(1):1–7.
5. Daldal E, Dagmura H. The correlation between complete blood count parameters and appendix diameter for the diagnosis of acute appendicitis. Healthcare. 2020;8(1):39 Multidisciplinary Digital Publishing Institute.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献