Analytical methods for identifying sequences of utilization in health data: a scoping review

Author:

Flothow AmelieORCID,Novelli Anna,Sundmacher Leonie

Abstract

Abstract Background Healthcare, as with other sectors, has undergone progressive digitalization, generating an ever-increasing wealth of data that enables research and the analysis of patient movement. This can help to evaluate treatment processes and outcomes, and in turn improve the quality of care. This scoping review provides an overview of the algorithms and methods that have been used to identify care pathways from healthcare utilization data. Method This review was conducted according to the methodology of the Joanna Briggs Institute and the Preferred Reporting Items for Systematic Reviews Extension for Scoping Reviews (PRISMA-ScR) Checklist. The PubMed, Web of Science, Scopus, and EconLit databases were searched and studies published in English between 2000 and 2021 considered. The search strategy used keywords divided into three categories: the method of data analysis, the requirement profile for the data, and the intended presentation of results. Criteria for inclusion were that health data were analyzed, the methodology used was described and that the chronology of care events was considered. In a two-stage review process, records were reviewed by two researchers independently for inclusion. Results were synthesized narratively. Results The literature search yielded 2,865 entries; 51 studies met the inclusion criteria. Health data from different countries ($$n=12$$ n = 12 ) and of different types of disease ($$n=26$$ n = 26 ) were analyzed with respect to different care events. Applied methods can be divided into those identifying subsequences of care and those describing full care trajectories. Variants of pattern mining or Markov models were mostly used to extract subsequences, with clustering often applied to find care trajectories. Statistical algorithms such as rule mining, probability-based machine learning algorithms or a combination of methods were also applied. Clustering methods were sometimes used for data preparation or result compression. Further characteristics of the included studies are presented. Conclusion Various data mining methods are already being applied to gain insight from health data. The great heterogeneity of the methods used shows the need for a scoping review. We performed a narrative review and found that clustering methods currently dominate the literature for identifying complete care trajectories, while variants of pattern mining dominate for identifying subsequences of limited length.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overview of the Last 71 Years of Metabolic and Bariatric Surgery: Content Analysis and Meta-analysis to Investigate the Topic and Scientific Evolution;Obesity Surgery;2024-03-15

2. Patient Clustering Optimization With K-Means In Healthcare Data Analysis;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3