Immortal time bias for life-long conditions in retrospective observational studies using electronic health records

Author:

Tyrer FreyaORCID,Bhaskaran Krishnan,Rutherford Mark J.

Abstract

Abstract Background Immortal time bias is common in observational studies but is typically described for pharmacoepidemiology studies where there is a delay between cohort entry and treatment initiation. Methods This study used the Clinical Practice Research Datalink (CPRD) and linked national mortality data in England from 2000 to 2019 to investigate immortal time bias for a specific life-long condition, intellectual disability. Life expectancy (Chiang’s abridged life table approach) was compared for 33,867 exposed and 980,586 unexposed individuals aged 10+ years using five methods: (1) treating immortal time as observation time; (2) excluding time before date of first exposure diagnosis; (3) matching cohort entry to first exposure diagnosis; (4) excluding time before proxy date of inputting first exposure diagnosis (by the physician); and (5) treating exposure as a time-dependent measure. Results When not considered in the design or analysis (Method 1), immortal time bias led to disproportionately high life expectancy for the exposed population during the first calendar period (additional years expected to live: 2000–2004: 65.6 [95% CI: 63.6,67.6]) compared to the later calendar periods (2005–2009: 59.9 [58.8,60.9]; 2010–2014: 58.0 [57.1,58.9]; 2015–2019: 58.2 [56.8,59.7]). Date of entry of diagnosis (Method 4) was unreliable in this CPRD cohort. The final methods (Method 2, 3 and 5) appeared to solve the main theoretical problem but residual bias may have remained. Conclusions We conclude that immortal time bias is a significant issue for studies of life-long conditions that use electronic health record data and requires careful consideration of how clinical diagnoses are entered onto electronic health record systems.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3