Development and validation of prediction model to estimate 10-year risk of all-cause mortality using modern statistical learning methods: a large population-based cohort study and external validation

Author:

Ajnakina OlesyaORCID,Agbedjro Deborah,McCammon Ryan,Faul Jessica,Murray Robin M.,Stahl Daniel,Steptoe Andrew

Abstract

Abstract Background In increasingly ageing populations, there is an emergent need to develop a robust prediction model for estimating an individual absolute risk for all-cause mortality, so that relevant assessments and interventions can be targeted appropriately. The objective of the study was to derive, evaluate and validate (internally and externally) a risk prediction model allowing rapid estimations of an absolute risk of all-cause mortality in the following 10 years. Methods For the model development, data came from English Longitudinal Study of Ageing study, which comprised 9154 population-representative individuals aged 50–75 years, 1240 (13.5%) of whom died during the 10-year follow-up. Internal validation was carried out using Harrell’s optimism-correction procedure; external validation was carried out using Health and Retirement Study (HRS), which is a nationally representative longitudinal survey of adults aged ≥50 years residing in the United States. Cox proportional hazards model with regularisation by the least absolute shrinkage and selection operator, where optimisation parameters were chosen based on repeated cross-validation, was employed for variable selection and model fitting. Measures of calibration, discrimination, sensitivity and specificity were determined in the development and validation cohorts. Results The model selected 13 prognostic factors of all-cause mortality encompassing information on demographic characteristics, health comorbidity, lifestyle and cognitive functioning. The internally validated model had good discriminatory ability (c-index=0.74), specificity (72.5%) and sensitivity (73.0%). Following external validation, the model’s prediction accuracy remained within a clinically acceptable range (c-index=0.69, calibration slope β=0.80, specificity=71.5% and sensitivity=70.6%). The main limitation of our model is twofold: 1) it may not be applicable to nursing home and other institutional populations, and 2) it was developed and validated in the cohorts with predominately white ethnicity. Conclusions A new prediction model that quantifies absolute risk of all-cause mortality in the following 10-years in the general population has been developed and externally validated. It has good prediction accuracy and is based on variables that are available in a variety of care and research settings. This model can facilitate identification of high risk for all-cause mortality older adults for further assessment or interventions.

Funder

National Institute on Aging

National Institute for Health Research

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3