A tutorial on the case time series design for small-area analysis

Author:

Gasparrini Antonio

Abstract

Abstract Background The increased availability of data on health outcomes and risk factors collected at fine geographical resolution is one of the main reasons for the rising popularity of epidemiological analyses conducted at small-area level. However, this rich data setting poses important methodological issues related to modelling complexities and computational demands, as well as the linkage and harmonisation of data collected at different geographical levels. Methods This tutorial illustrated the extension of the case time series design, originally proposed for individual-level analyses on short-term associations with time-varying exposures, for applications using data aggregated over small geographical areas. The case time series design embeds the longitudinal structure of time series data within the self-matched framework of case-only methods, offering a flexible and highly adaptable analytical tool. The methodology is well suited for modelling complex temporal relationships, and it provides an efficient computational scheme for large datasets including longitudinal measurements collected at a fine geographical level. Results The application of the case time series for small-area analyses is demonstrated using a real-data case study to assess the mortality risks associated with high temperature in the summers of 2006 and 2013 in London, UK. The example makes use of information on individual deaths, temperature, and socio-economic characteristics collected at different geographical levels. The tutorial describes the various steps of the analysis, namely the definition of the case time series structure and the linkage of the data, as well as the estimation of the risk associations and the assessment of vulnerability differences. R code and data are made available to fully reproduce the results and the graphical descriptions. Conclusions The extension of the case time series for small-area analysis offers a valuable analytical tool that combines modelling flexibility and computational efficiency. The increasing availability of data collected at fine geographical scales provides opportunities for its application to address a wide range of epidemiological questions.

Funder

Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3