Simulation analysis of an adjusted gravity model for hospital admissions robust to incomplete data

Author:

Latruwe Timo,Van der Wee Marlies,Vanleenhove Pieter,Michielsen Kwinten,Verbrugge Sofie,Colle Didier

Abstract

Abstract Background Gravity models are often hard to apply in practice due to their data-hungry nature. Standard implementations of gravity models require that data on each variable is available for each supply node. Since these model types are often applied in a competitive context, data availability of specific variables is commonly limited to a subset of supply nodes. Methods This paper introduces a methodology that accommodates the use of variables for which data availability is incomplete, developed for a health care context, but more broadly applicable. The study uses simulated data to evaluate the performance of the proposed methodology in comparison with a conventional approach of dropping variables from the model. Results It is shown that the proposed methodology is able to improve overall model accuracy compared to dropping variables from the model, and that model accuracy is considerably improved within the subset of supply nodes for which data is available, even when that availability is sparse. Conclusion The proposed methodology is a viable approach to improve the performance of gravity models in a competitive health care context, where data availability is limited, and especially where a the supply nodes with complete data are most relevant for the practitioner.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3