Evaluating methods for Lasso selective inference in biomedical research: a comparative simulation study

Author:

Kammer Michael,Dunkler Daniela,Michiels Stefan,Heinze Georg

Abstract

Abstract Background Variable selection for regression models plays a key role in the analysis of biomedical data. However, inference after selection is not covered by classical statistical frequentist theory, which assumes a fixed set of covariates in the model. This leads to over-optimistic selection and replicability issues. Methods We compared proposals for selective inference targeting the submodel parameters of the Lasso and its extension, the adaptive Lasso: sample splitting, selective inference conditional on the Lasso selection (SI), and universally valid post-selection inference (PoSI). We studied the properties of the proposed selective confidence intervals available via R software packages using a neutral simulation study inspired by real data commonly seen in biomedical studies. Furthermore, we present an exemplary application of these methods to a publicly available dataset to discuss their practical usability. Results Frequentist properties of selective confidence intervals by the SI method were generally acceptable, but the claimed selective coverage levels were not attained in all scenarios, in particular with the adaptive Lasso. The actual coverage of the extremely conservative PoSI method exceeded the nominal levels, and this method also required the greatest computational effort. Sample splitting achieved acceptable actual selective coverage levels, but the method is inefficient and leads to less accurate point estimates. The choice of inference method had a large impact on the resulting interval estimates, thereby necessitating that the user is acutely aware of the goal of inference in order to interpret and communicate the results. Conclusions Despite violating nominal coverage levels in some scenarios, selective inference conditional on the Lasso selection is our recommended approach for most cases. If simplicity is strongly favoured over efficiency, then sample splitting is an alternative. If only few predictors undergo variable selection (i.e. up to 5) or the avoidance of false positive claims of significance is a concern, then the conservative approach of PoSI may be useful. For the adaptive Lasso, SI should be avoided and only PoSI and sample splitting are recommended. In summary, we find selective inference useful to assess the uncertainties in the importance of individual selected predictors for future applications.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3