Outlier detection in spatial error models using modified thresholding-based iterative procedure for outlier detection approach

Author:

Cai Jiaxin,Hu Weiwei,Yang Yuhui,Yan Hong,Chen Fangyao

Abstract

Abstract Background Outliers, data points that significantly deviate from the norm, can have a substantial impact on statistical inference and provide valuable insights in data analysis. Multiple methods have been developed for outlier detection, however, almost all available approaches fail to consider the spatial dependence and heterogeneity in spatial data. Spatial data has diverse formats and semantics, requiring specialized outlier detection methodology to handle these unique properties. For now, there is limited research exists on robust spatial outlier detection methods designed specifically under the spatial error model (SEM) structure. Method We propose the Spatial-Θ-Iterative Procedure for Outlier Detection (Spatial-Θ-IPOD), which utilizes a mean-shift vector to identify outliers within the SEM. Our method enables an effective detection of spatial outliers while also providing robust coefficient estimates. To assess the performance of our approach, we conducted extensive simulations and applied it to a real-world empirical study using life expectancy data from multiple countries. Results Simulation results showed that the masking and JD (Joint Detection) indicators of our Spatial-Θ-IPOD method outperformed several commonly used methods, even in high-dimensional scenarios, demonstrating stable performance. Conversely, the Θ-IPOD method proved to be ineffective in detecting outliers when spatial correlation was present. Moreover, our model successfully provided reliable coefficient estimation alongside outlier detection. The proposed method consistently outperformed other models (both robust and non-robust) in most cases. In the empirical study, our proposed model successfully detected outliers and provided valuable insights in the modeling process. Conclusions Our proposed Spatial-Θ-IPOD offers an effective solution for detecting spatial outliers for SEM while providing robust coefficient estimates. Notably, our approach showcases its relative superiority even in the presence of high leverage points. By successfully identifying outliers, our method enhances the overall understanding of the data and provides valuable insights for further analysis.

Funder

National Key Research and Development Program of China

National Social Science Fund of China

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3