Generative adversarial networks for imputing missing data for big data clinical research

Author:

Dong Weinan,Fong Daniel Yee Tak,Yoon Jin-sun,Wan Eric Yuk Fai,Bedford Laura Elizabeth,Tang Eric Ho Man,Lam Cindy Lo Kuen

Abstract

Abstract Background Missing data is a pervasive problem in clinical research. Generative adversarial imputation nets (GAIN), a novel machine learning data imputation approach, has the potential to substitute missing data accurately and efficiently but has not yet been evaluated in empirical big clinical datasets. Objectives This study aimed to evaluate the accuracy of GAIN in imputing missing values in large real-world clinical datasets with mixed-type variables. The computation efficiency of GAIN was also evaluated. The performance of GAIN was compared with other commonly used methods, MICE and missForest. Methods Two real world clinical datasets were used. The first was that of a cohort study on the long-term outcomes of patients with diabetes (50,000 complete cases), and the second was of a cohort study on the effectiveness of a risk assessment and management programme for patients with hypertension (10,000 complete cases). Missing data (missing at random) to independent variables were simulated at different missingness rates (20, 50%). The normalized root mean square error (NRMSE) between imputed values and real values for continuous variables and the proportion of falsely classified (PFC) for categorical variables were used to measure imputation accuracy. Computation time per imputation for each method was recorded. The differences in accuracy of different imputation methods were compared using ANOVA or non-parametric test. Results Both missForest and GAIN were more accurate than MICE. GAIN showed similar accuracy as missForest when the simulated missingness rate was 20%, but was more accurate when the simulated missingness rate was 50%. GAIN was the most accurate for the imputation of skewed continuous and imbalanced categorical variables at both missingness rates. GAIN had a much higher computation speed (32 min on PC) comparing to that of missForest (1300 min) when the sample size is 50,000. Conclusion GAIN showed better accuracy as an imputation method for missing data in large real-world clinical datasets compared to MICE and missForest, and was more resistant to high missingness rate (50%). The high computation speed is an added advantage of GAIN in big clinical data research. It holds potential as an accurate and efficient method for missing data imputation in future big data clinical research. Trial registration ClinicalTrials.gov ID: NCT03299010; Unique Protocol ID: HKUCTR-2232

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3