Abstract screening using the automated tool Rayyan: results of effectiveness in three diagnostic test accuracy systematic reviews

Author:

Valizadeh Amir,Moassefi Mana,Nakhostin-Ansari Amin,Hosseini Asl Seyed Hossein,Saghab Torbati Mehrnush,Aghajani Reyhaneh,Maleki Ghorbani Zahra,Faghani Shahriar

Abstract

Abstract Objective To evaluate the performance of the automated abstract screening tool Rayyan. Methods The records obtained from the search for three systematic reviews were manually screened in four stages. At the end of each stage, Rayyan was used to predict the eligibility score for the remaining records. At two different thresholds (≤2.5 and < 2.5 for exclusion of a record) Rayyan-generated ratings were compared with the decisions made by human reviewers in the manual screening process and the tool’s accuracy metrics were calculated. Results Two thousand fifty-four records were screened manually, of which 379 were judged to be eligible for full-text assessment, and 112 were eventually included in the final review. For finding records eligible for full-text assessment, at the threshold of < 2.5 for exclusion, Rayyan managed to achieve sensitivity values of 97-99% with specificity values of 19-58%, while at the threshold of ≤2.5 for exclusion it had a specificity of 100% with sensitivity values of 1-29%. For the task of finding eligible reports for inclusion in the final review, almost similar results were obtained. Discussion At the threshold of < 2.5 for exclusion, Rayyan managed to be a reliable tool for excluding ineligible records, but it was not much reliable for finding eligible records. We emphasize that this study was conducted on diagnostic test accuracy reviews, which are more difficult to screen due to inconsistent terminology.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Reference23 articles.

1. Morton S, Berg A, Levit L, Eden J. Finding what works in health care: standards for systematic reviews; 2011.

2. Portney LG. Foundations of clinical research: applications to evidence-based practice. FA Davis. 2020.

3. Lefebvre C, et al. Searching for and selecting studies. Cochrane Handbook Syst Rev Intervent. 2019;67–107.

4. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:1–10.

5. Covidence. Covidence systematic review software, veritas health innovation. Melbourne; 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3