Genetic matching for time-dependent treatments: a longitudinal extension and simulation study

Author:

Weymann Deirdre,Chan Brandon,Regier Dean A.

Abstract

AbstractBackgroundLongitudinal matching can mitigate confounding in observational, real-world studies of time-dependent treatments. To date, these methods have required iterative, manual re-specifications to achieve covariate balance. We propose a longitudinal extension of genetic matching, a machine learning approach that automates balancing of covariate histories. We examine performance by comparing the proposed extension against baseline propensity score matching and time-dependent propensity score matching.MethodsTo evaluate comparative performance, we developed a Monte Carlo simulation framework that reflects a static treatment assigned at multiple time points. Data generation considers a treatment assignment model, a continuous outcome model, and underlying covariates. In simulation, we generated 1,000 datasets, each consisting of 1,000 subjects, and applied: (1) nearest neighbour matching on time-invariant, baseline propensity scores; (2) sequential risk set matching on time-dependent propensity scores; and (3) longitudinal genetic matching on time-dependent covariates. To measure comparative performance, we estimated covariate balance, efficiency, bias, and root mean squared error (RMSE) of treatment effect estimates. In scenario analysis, we varied underlying assumptions for assumed covariate distributions, correlations, treatment assignment models, and outcome models.ResultsIn all scenarios, baseline propensity score matching resulted in biased effect estimation in the presence of time-dependent confounding, with mean bias ranging from 29.7% to 37.2%. In contrast, time-dependent propensity score matching and longitudinal genetic matching achieved stronger covariate balance and yielded less biased estimation, with mean bias ranging from 0.7% to 13.7%. Across scenarios, longitudinal genetic matching achieved similar or better performance than time-dependent propensity score matching without requiring manual re-specifications or normality of covariates.ConclusionsWhile the most appropriate longitudinal method will depend on research questions and underlying data patterns, our study can help guide these decisions. Simulation results demonstrate the validity of our longitudinal genetic matching approach for supporting future real-world assessments of treatments accessible at multiple time points.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3