Predicting clinical events using Bayesian multivariate linear mixed models with application to scleroderma

Author:

Kim Ji Soo,Shah Ami A.,Hummers Laura K.,Zeger Scott L.

Abstract

Abstract Background Scleroderma is a serious chronic autoimmune disease in which a patient’s disease state manifests in several irregularly spaced longitudinal measures of lung, heart, skin, and other organ systems. Threshold crossings of pulmonary and cardiac measures indicate potentially life-threatening key clinical events including interstitial lung disease (ILD), cardiomyopathy, and pulmonary hypertension (PH). The statistical challenge is to accurately and precisely predict these events by using all of the clinical history for the patient at hand and for a reference population of patients. Methods We use a Bayesian mixed model approach to simultaneously characterize each individual’s future trajectories for several biomarkers. We estimate this model using a large population of patients from the Johns Hopkins Scleroderma Center Research Registry. The joint probabilities of critical lung and heart events are then calculated as a byproduct of the mixed model. Results The performance of this approach is substantially better than standard, more common alternatives. In order to predict an individual’s risks in a clinical setting, we also develop a cross-validated, sequential prediction (CVSP) algorithm. As additional data are observed during a patient’s visit, the algorithm sequentially produces updated predictions for the future longitudinal trajectories and for ILD, cardiomyopathy, and PH. The updated prediction distributions with little additional computing, for example within an electronic health record (EHR). Conclusions This method that generates real-time personalized risk estimates has been implemented within the electronic health record system for clinical testing. To our knowledge, this work represents the first approach to compute personalized risk estimates for multiple scleroderma complications.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3