Individual-specific networks for prediction modelling – A scoping review of methods

Author:

Gregorich Mariella,Melograna Federico,Sunqvist Martina,Michiels Stefan,Van Steen Kristel,Heinze Georg

Abstract

Abstract Background Recent advances in biotechnology enable the acquisition of high-dimensional data on individuals, posing challenges for prediction models which traditionally use covariates such as clinical patient characteristics. Alternative forms of covariate representations for the features derived from these modern data modalities should be considered that can utilize their intrinsic interconnection. The connectivity information between these features can be represented as an individual-specific network defined by a set of nodes and edges, the strength of which can vary from individual to individual. Global or local graph-theoretical features describing the network may constitute potential prognostic biomarkers instead of or in addition to traditional covariates and may replace the often unsuccessful search for individual biomarkers in a high-dimensional predictor space. Methods We conducted a scoping review to identify, collate and critically appraise the state-of-art in the use of individual-specific networks for prediction modelling in medicine and applied health research, published during 2000–2020 in the electronic databases PubMed, Scopus and Embase. Results Our scoping review revealed the main application areas namely neurology and pathopsychology, followed by cancer research, cardiology and pathology (N = 148). Network construction was mainly based on Pearson correlation coefficients of repeated measurements, but also alternative approaches (e.g. partial correlation, visibility graphs) were found. For covariates measured only once per individual, network construction was mostly based on quantifying an individual’s contribution to the overall group-level structure. Despite the multitude of identified methodological approaches for individual-specific network inference, the number of studies that were intended to enable the prediction of clinical outcomes for future individuals was quite limited, and most of the models served as proof of concept that network characteristics can in principle be useful for prediction. Conclusion The current body of research clearly demonstrates the value of individual-specific network analysis for prediction modelling, but it has not yet been considered as a general tool outside the current areas of application. More methodological research is still needed on well-founded strategies for network inference, especially on adequate network sparsification and outcome-guided graph-theoretical feature extraction and selection, and on how networks can be exploited efficiently for prediction modelling.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3