A clinical phase I dose-finding design with adaptive shrinking boundaries for drug combination trials

Author:

Li Zhaohang,Xu Ze,Zhang Aijun,Qi Guanpeng,Li Zuojing

Abstract

Abstract Background Combinations of drugs are becoming increasingly common in oncology treatment. In some cases, patients can benefit from the interaction between two drugs, although there is usually a higher risk of developing toxicity. Due to drug–drug interactions, multidrug combinations often exhibit different toxicity profiles than those of single drugs, leading to a complex trial scenario. Numerous methods have been proposed for the design of phase I drug combination trials. For example, the two-dimensional Bayesian optimal interval design for combination drug (BOINcomb) is simple to implement and has desirable performance. However, in scenarios where the lowest and starting dose is close to being toxic, the BOINcomb design may tend to allocate more patients to overly toxic doses, and select an overly toxic dose combination as the maximum tolerated dose combination. Method To improve the performance of BOINcomb in the above extreme scenarios, we widen the range of variation of the boundaries by setting the self-shrinking dose escalation and de-escalation boundaries. We refer to the new design as adaptive shrinking Bayesian optimal interval design for combination drug (asBOINcomb). We conduct a simulation study to evaluate the performance of the proposed design using a real clinical trial example. Results Our simulation results show that asBOINcomb is more accurate and stable than BOINcomb, especially in some extreme scenarios. Specifically, in all ten scenarios, the percentage of correct selection is higher than the BOINcomb design within 30 to 60 patients. Conclusion The proposed asBOINcomb design is transparent and simple to implement and can reduce the trial sample size while maintaining accuracy compared with the BOINcomb design.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3