Comparison of discrimination and calibration performance of ECG-based machine learning models for prediction of new-onset atrial fibrillation

Author:

Baj Giovanni,Gandin Ilaria,Scagnetto Arjuna,Bortolussi Luca,Cappelletto Chiara,Di Lenarda Andrea,Barbati Giulia

Abstract

AbstractBackgroundMachine learning (ML) methods to build prediction models starting from electrocardiogram (ECG) signals are an emerging research field. The aim of the present study is to investigate the performances of two ML approaches based on ECGs for the prediction of new-onset atrial fibrillation (AF), in terms of discrimination, calibration and sample size dependence.MethodsWe trained two models to predict new-onset AF: a convolutional neural network (CNN), that takes as input the raw ECG signals, and an eXtreme Gradient Boosting model (XGB), that uses the signal’s extracted features. A penalized logistic regression model (LR) was used as a benchmark. Discrimination was evaluated with the area under the ROC curve, while calibration with the integrated calibration index. We investigated the dependence of models’ performances on the sample size and on class imbalance corrections introduced with random under-sampling.ResultsCNN's discrimination was the most affected by the sample size, outperforming XGB and LR only aroundn = 10.000 observations. Calibration showed only a small dependence on the sample size for all the models considered.Balancing the training set with random undersampling did not improve discrimination in any of the models. Instead, the main effect of imbalance corrections was to worsen the models’ calibration (for CNN, integrated calibration index from 0.014 [0.01, 0.018] to 0.17 [0.16, 0.19]).The sample size emerged as a fundamental point for developing the CNN model, especially in terms of discrimination (AUC = 0.75 [0.73, 0.77] whenn = 10.000, AUC = 0.80 [0.79, 0.81] whenn = 150.000). The effect of the sample size on the other two models was weaker. Imbalance corrections led to poorly calibrated models, for all the approaches considered, reducing the clinical utility of the models.ConclusionsOur results suggest that the choice of approach in the analysis of ECG should be based on the amount of data available, preferring more standard models for small datasets. Moreover, imbalance correction methods should be avoided when developing clinical prediction models, where calibration is crucial.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3