SpatialWavePredict: a tutorial-based primer and toolbox for forecasting growth trajectories using the ensemble spatial wave sub-epidemic modeling framework

Author:

Chowell Gerardo,Tariq Amna,Dahal Sushma,Bleichrodt Amanda,Luo Ruiyan,Hyman James M.

Abstract

Abstract Background Dynamical mathematical models defined by a system of differential equations are typically not easily accessible to non-experts. However, forecasts based on these types of models can help gain insights into the mechanisms driving the process and may outcompete simpler phenomenological growth models. Here we introduce a friendly toolbox, SpatialWavePredict, to characterize and forecast the spatial wave sub-epidemic model, which captures diverse wave dynamics by aggregating multiple asynchronous growth processes and has outperformed simpler phenomenological growth models in short-term forecasts of various infectious diseases outbreaks including SARS, Ebola, and the early waves of the COVID-19 pandemic in the US. Results This tutorial-based primer introduces and illustrates a user-friendly MATLAB toolbox for fitting and forecasting time-series trajectories using an ensemble spatial wave sub-epidemic model based on ordinary differential equations. Scientists, policymakers, and students can use the toolbox to conduct real-time short-term forecasts. The five-parameter epidemic wave model in the toolbox aggregates linked overlapping sub-epidemics and captures a rich spectrum of epidemic wave dynamics, including oscillatory wave behavior and plateaus. An ensemble strategy aims to improve forecasting performance by combining the resulting top-ranked models. The toolbox provides a tutorial for forecasting time-series trajectories, including the full uncertainty distribution derived through parametric bootstrapping, which is needed to construct prediction intervals and evaluate their accuracy. Functions are available to assess forecasting performance, estimation methods, error structures in the data, and forecasting horizons. The toolbox also includes functions to quantify forecasting performance using metrics that evaluate point and distributional forecasts, including the weighted interval score. Conclusions We have developed the first comprehensive toolbox to characterize and forecast time-series data using an ensemble spatial wave sub-epidemic wave model. As an epidemic situation or contagion occurs, the tools presented in this tutorial can facilitate policymakers to guide the implementation of containment strategies and assess the impact of control interventions. We demonstrate the functionality of the toolbox with examples, including a tutorial video, and is illustrated using daily data on the COVID-19 pandemic in the USA.

Funder

National Science Foundation

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Reference44 articles.

1. Petropoulos F, Apiletti D, Assimakopoulos V, Babai MZ, Barrow DK, Ben Taieb S, Bergmeir C, Bessa RJ, Bijak J, Boylan JE, et al. Forecasting: theory and practice. Int J Forecast. 2022;38(3):705–871.

2. Dimri T, Ahmad S, Sharif M. Time series analysis of climate variables using seasonal ARIMA approach. J Earth Syst Sci. 2020;129:149.

3. Hyndman RJ, Athanasopoulos G. Forecasting: Principles and Practice. 2nd ed. OTexts. 2018. p. 384.

4. Mondal P, Shit L, Goswami S. Study of effectiveness of time series modeling (ARIMA) in forecasting stock prices. Int J Sci Eng Appl. 2014;4(2):13.

5. Shamsnia SA, Shahidi N, Liaghat A, Sarraf A, Vahdat SF. Modeling of weather parameters using stochastic methods (ARIMA model)(case study: Abadeh Region, Iran). In: International Conference on Environment and Industrial Innovation. IPCBEE. 2011;12.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3