A simple pooling method for variable selection in multiply imputed datasets outperformed complex methods

Author:

Panken A. M.,Heymans M. W.

Abstract

AbstractBackgroundFor the development of prognostic models, after multiple imputation, variable selection is advised to be applied from the pooled model. The aim of this study is to evaluate by using a simulation study and practical data example the performance of four different pooling methods for variable selection in multiple imputed datasets. These methods are the D1, D2, D3 and recently extended Median-P-Rule (MPR) for categorical, dichotomous, and continuous variables in logistic regression models.MethodsFour datasets (n = 200 andn = 500), with 9 variables and correlations of respectively 0.2 and 0.6 between these variables, were simulated. These datasets included 2 categorical and 2 continuous variables with 20% missing at random data. Multiple Imputation (m = 5) was applied, and the four methods were compared with selection from the full model (without missing data). The same analyzes were repeated in five multiply imputed real-world datasets (NHANES) (m = 5,p = 0.05,N = 250/300/400/500/1000).ResultsIn the simulated datasets, the differences between the pooling methods were most evident in the smaller datasets. The MPR performed equal to all other pooling methods for the selection frequency, as well as for the P-values of the continuous and dichotomous variables, however the MPR performed consistently better for pooling and selecting categorical variables in multiply imputed datasets and also regarding the stability of the selected prognostic models. Analyzes in the NHANES-dataset showed that all methods mostly selected the same models. Compared to each other however, the D2-method seemed to be the least sensitive and the MPR the most sensitive, most simple, and easy method to apply.ConclusionsConsidering that MPR is the most simple and easy pooling method to use for epidemiologists and applied researchers, we carefully recommend using the MPR-method to pool categorical variables with more than two levels after Multiple Imputation in combination with Backward Selection-procedures (BWS). Because MPR never performed worse than the other methods in continuous and dichotomous variables we also advice to use MPR in these types of variables.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3