IPDfromKM: reconstruct individual patient data from published Kaplan-Meier survival curves

Author:

Liu Na,Zhou Yanhong,Lee J. JackORCID

Abstract

Abstract Background When applying secondary analysis on published survival data, it is critical to obtain each patient’s raw data, because the individual patient data (IPD) approach has been considered as the gold standard of data analysis. However, researchers often lack access to IPD. We aim to propose a straightforward and robust approach to obtain IPD from published survival curves with a user-friendly software platform. Results Improving upon existing methods, we propose an easy-to-use, two-stage approach to reconstruct IPD from published Kaplan-Meier (K-M) curves. Stage 1 extracts raw data coordinates and Stage 2 reconstructs IPD using the proposed method. To facilitate the use of the proposed method, we developed the R package IPDfromKM and an accompanying web-based Shiny application. Both the R package and Shiny application have an “all-in-one” feature such that users can use them to extract raw data coordinates from published K-M curves, reconstruct IPD from the extracted data coordinates, visualize the reconstructed IPD, assess the accuracy of the reconstruction, and perform secondary analysis on the basis of the reconstructed IPD. We illustrate the use of the R package and the Shiny application with K-M curves from published studies. Extensive simulations and real-world data applications demonstrate that the proposed method has high accuracy and great reliability in estimating the number of events, number of patients at risk, survival probabilities, median survival times, and hazard ratios. Conclusions IPDfromKM has great flexibility and accuracy to reconstruct IPD from published K-M curves with different shapes. We believe that the R package and the Shiny application will greatly facilitate the potential use of quality IPD and advance the use of secondary data to facilitate informed decision making in medical research.

Funder

National Cancer Institute

Cancer Prevention and Research Institute of Texas

University of Texas MD Anderson Cancer Center

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3