Bayesian mendelian randomization with study heterogeneity and data partitioning for large studies

Author:

Zou Linyi,Guo Hui,Berzuini Carlo

Abstract

Abstract Background Mendelian randomization (MR) is a useful approach to causal inference from observational studies when randomised controlled trials are not feasible. However, study heterogeneity of two association studies required in MR is often overlooked. When dealing with large studies, recently developed Bayesian MR can be computationally challenging, and sometimes even prohibitive. Methods We addressed study heterogeneity by proposing a random effect Bayesian MR model with multiple exposures and outcomes. For large studies, we adopted a subset posterior aggregation method to overcome the problem of computational expensiveness of Markov chain Monte Carlo. In particular, we divided data into subsets and combined estimated causal effects obtained from the subsets. The performance of our method was evaluated by a number of simulations, in which exposure data was partly missing. Results Random effect Bayesian MR outperformed conventional inverse-variance weighted estimation, whether the true causal effects were zero or non-zero. Data partitioning of large studies had little impact on variations of the estimated causal effects, whereas it notably affected unbiasedness of the estimates with weak instruments and high missing rate of data. For the cases being simulated in our study, the results have indicated that the “divide (data) and combine (estimated subset causal effects)” can help improve computational efficiency, for an acceptable cost in terms of bias in the causal effect estimates, as long as the size of the subsets is reasonably large. Conclusions We further elaborated our Bayesian MR method to explicitly account for study heterogeneity. We also adopted a subset posterior aggregation method to ease computational burden, which is important especially when dealing with large studies. Despite the simplicity of the model we have used in the simulations, we hope the present work would effectively point to MR studies that allow modelling flexibility, especially in relation to the integration of heterogeneous studies and computational practicality.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Reference20 articles.

1. Katan MB. Apolipoprotein e isoforms, serum cholesterol, and cancer. Lancet. 1986; 327:507–8.

2. Smith GD, Ebrahim S. Mendelian randomization: can genetic epidemiology contribute to understanding environmental determinants of disease?Int J Epidemiol. 2003; 32:1–22.

3. Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Smith GD. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Int J Epidemiol. 2008; 27:1133–63.

4. Johnson T. Efficient calculation for multi-snp genetic risk scores. Technical report. 2013. http://cran.r-project.org/web/packages/gtx/vignettes/ashg2012.pdf.

5. Bowden J, Smith GD, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through egger regression. Int J Epidemiol. 2015; 44(2):512–25.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3