On model-based time trend adjustments in platform trials with non-concurrent controls

Author:

Roig Marta Bofill,Krotka Pavla,Burman Carl-Fredrik,Glimm Ekkehard,Gold Stefan M.,Hees Katharina,Jacko Peter,Koenig Franz,Magirr Dominic,Mesenbrink Peter,Viele Kert,Posch Martin

Abstract

AbstractBackgroundPlatform trials can evaluate the efficacy of several experimental treatments compared to a control. The number of experimental treatments is not fixed, as arms may be added or removed as the trial progresses. Platform trials are more efficient than independent parallel group trials because of using shared control groups. However, for a treatment entering the trial at a later time point, the control group is divided into concurrent controls, consisting of patients randomised to control when that treatment arm is in the platform, and non-concurrent controls, patients randomised before. Using non-concurrent controls in addition to concurrent controls can improve the trial’s efficiency by increasing power and reducing the required sample size, but can introduce bias due to time trends.MethodsWe focus on a platform trial with two treatment arms and a common control arm. Assuming that the second treatment arm is added at a later time, we assess the robustness of recently proposed model-based approaches to adjust for time trends when utilizing non-concurrent controls. In particular, we consider approaches where time trends are modeled either as linear in time or as a step function, with steps at time points where treatments enter or leave the platform trial. For trials with continuous or binary outcomes, we investigate the type 1 error rate and power of testing the efficacy of the newly added arm, as well as the bias and root mean squared error of treatment effect estimates under a range of scenarios. In addition to scenarios where time trends are equal across arms, we investigate settings with different time trends or time trends that are not additive in the scale of the model.ResultsA step function model, fitted on data from all treatment arms, gives increased power while controlling the type 1 error, as long as the time trends are equal for the different arms and additive on the model scale. This holds even if the shape of the time trend deviates from a step function when patients are allocated to arms by block randomisation. However, if time trends differ between arms or are not additive to treatment effects in the scale of the model, the type 1 error rate may be inflated.ConclusionsThe efficiency gained by using step function models to incorporate non-concurrent controls can outweigh potential risks of biases, especially in settings with small sample sizes. Such biases may arise if the model assumptions of equality and additivity of time trends are not satisfied. However, the specifics of the trial, scientific plausibility of different time trends, and robustness of results should be carefully considered.

Funder

Innovative Medicines Initiative

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3