A four-step strategy for handling missing outcome data in randomised trials affected by a pandemic

Author:

Cro SuzieORCID,Morris Tim P.,Kahan Brennan C.,Cornelius Victoria R.,Carpenter James R.

Abstract

Abstract Background The coronavirus pandemic (Covid-19) presents a variety of challenges for ongoing clinical trials, including an inevitably higher rate of missing outcome data, with new and non-standard reasons for missingness. International drug trial guidelines recommend trialists review plans for handling missing data in the conduct and statistical analysis, but clear recommendations are lacking. Methods We present a four-step strategy for handling missing outcome data in the analysis of randomised trials that are ongoing during a pandemic. We consider handling missing data arising due to (i) participant infection, (ii) treatment disruptions and (iii) loss to follow-up. We consider both settings where treatment effects for a ‘pandemic-free world’ and ‘world including a pandemic’ are of interest. Results In any trial, investigators should; (1) Clarify the treatment estimand of interest with respect to the occurrence of the pandemic; (2) Establish what data are missing for the chosen estimand; (3) Perform primary analysis under the most plausible missing data assumptions followed by; (4) Sensitivity analysis under alternative plausible assumptions. To obtain an estimate of the treatment effect in a ‘pandemic-free world’, participant data that are clinically affected by the pandemic (directly due to infection or indirectly via treatment disruptions) are not relevant and can be set to missing. For primary analysis, a missing-at-random assumption that conditions on all observed data that are expected to be associated with both the outcome and missingness may be most plausible. For the treatment effect in the ‘world including a pandemic’, all participant data is relevant and should be included in the analysis. For primary analysis, a missing-at-random assumption – potentially incorporating a pandemic time-period indicator and participant infection status – or a missing-not-at-random assumption with a poorer response may be most relevant, depending on the setting. In all scenarios, sensitivity analysis under credible missing-not-at-random assumptions should be used to evaluate the robustness of results. We highlight controlled multiple imputation as an accessible tool for conducting sensitivity analyses. Conclusions Missing data problems will be exacerbated for trials active during the Covid-19 pandemic. This four-step strategy will facilitate clear thinking about the appropriate analysis for relevant questions of interest.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Reference37 articles.

1. World Health Organisation. Coronavirus disease 2019 (COVID-19) Situation Report – 51. 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10. Accessed 27 July 2020.

2. U.S. Department of Health and Human Services Food and Drug Administration. FDA Guidance on Conduct of Clinical Trials of Medical Products during COVID-19 Pandemic. 2020, updated 2nd July 2020. Available from https://www.fda.gov/media/136238/download. Accessed 27 July 2020.

3. European Medicines Agency. Implications of coronavirus disease (COVID-19) on methodological aspects of ongoing clinical trials. 2020, adopted 26th June 2020. Available from https://www.ema.europa.eu/en/documents/scientific-guideline/points-consider-implications-coronavirus-disease-covid-19-methodological-aspects-ongoing-clinical_en-0.pdf. Accessed 27 July 2020.

4. Medicines and Healthcare products Regulatory Agency. Managing clinical trials during Coronavirus (COVID-19). 2020, updated 21st May 2020. Available from https://www.gov.uk/guidance/managing-clinical-trials-during-coronavirus-covid-19. Accessed 27 July 2020.

5. National Research Council (US) Panel on Handling Missing Data in Clinical Trials. The Prevention and Treatment of Missing Data in Clinical Trials. Washington (DC): National Academies Press (US); 2010. Available from: https://www.ncbi.nlm.nih.gov/books/NBK209904/?report=classic. Accessed 27 July 2020. https://doi.org/10.17226/12955.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3