Phase I dose-escalation oncology trials with sequential multiple schedules

Author:

Günhan Burak KürsadORCID,Weber Sebastian,Seroutou Abdelkader,Friede TimORCID

Abstract

Abstract Background Conventional methods for phase I dose-escalation trials in oncology are based on a single treatment schedule only. More recently, however, multiple schedules are more frequently investigated in the same trial. Methods Here, we consider sequential phase I trials, where the trial proceeds with a new schedule (e.g. daily or weekly dosing) once the dose escalation with another schedule has been completed. The aim is to utilize the information from both the completed and the ongoing schedules to inform decisions on the dose level for the next dose cohort. For this purpose, we adapted the time-to-event pharmacokinetics (TITE-PK) model, which were originally developed for simultaneous investigation of multiple schedules. TITE-PK integrates information from multiple schedules using a pharmacokinetics (PK) model. Results In a simulation study, the developed approach is compared to the bridging continual reassessment method and the Bayesian logistic regression model using a meta-analytic-predictive prior. TITE-PK results in better performance than comparators in terms of recommending acceptable dose and avoiding overly toxic doses for sequential phase I trials in most of the scenarios considered. Furthermore, better performance of TITE-PK is achieved while requiring similar number of patients in the simulated trials. For the scenarios involving one schedule, TITE-PK displays similar performance with alternatives in terms of acceptable dose recommendations. The and code for the implementation of an illustrative sequential phase I trial example in oncology is publicly available (https://github.com/gunhanb/TITEPK_sequential). Conclusion In phase I oncology trials with sequential multiple schedules, the use of all relevant information is of great importance. For these trials, the adapted TITE-PK which combines information using PK principles is recommended.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3