Comparison of hierarchical EMAX and NDLM models in dose-response for early phase clinical trials

Author:

Huang Xiaqing,Gajewski Byron J.ORCID

Abstract

Abstract Background Phase II clinical trials primarily aim to find the optimal dose and investigate the relationship between dose and efficacy relative to standard of care (control). Therefore, before moving forward to a phase III confirmatory trial, the most effective dose is needed to be identified. Methods The primary endpoint of a phase II trial is typically a binary endpoint of success or failure. The EMAX model, ubiquitous in pharmacology research, was fit for many compounds and described the data well, except for a single compound, which had nonmonotone dose–response (Thomas et al., Stat Biopharmaceutical Res. 6:302-317 2014). To mitigate the risk of nonmonotone dose response one of the alternative options is a Bayesian hierarchical EMAX model (Gajewski et al., Stat Med. 38:3123-3138 2019). The hierarchical EMAX adapts to its environment. Results When the dose-response curve is monotonic it enjoys the efficiency of EMAX. When the dose-response curve is non-monotonic the additional random effect hyperprior makes the hierarchical EMAX model more adjustable and flexible. However, the normal dynamic linear model (NDLM) is a useful model to explore dose-response relationships in that the efficacy at the current dose depends on the efficacy of the previous dose(s). Previous research has compared the EMAX to the hierarchical EMAX (Gajewski et al., Stat Med. 38:3123-3138 2019) and the EMAX to the NDLM (Liu et al., BMC Med Res Method 17:149 2017), however, the hierarchical EMAX has not been directly compared to the NDLM. Conclusions The focus of this paper is to compare these models and discuss the relative merit for each of their uses for an ongoing early phase dose selection study.

Funder

National Center for Advancing Translational Sciences

National Institute of Neurological Disorders and Stroke

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3