Comparison of Bayesian Networks, G-estimation and linear models to estimate causal treatment effects in aggregated N-of-1 trials with carry-over effects

Author:

Gärtner Thomas,Schneider Juliana,Arnrich Bert,Konigorski Stefan

Abstract

Abstract Background The aggregation of a series of N-of-1 trials presents an innovative and efficient study design, as an alternative to traditional randomized clinical trials. Challenges for the statistical analysis arise when there is carry-over or complex dependencies of the treatment effect of interest. Methods In this study, we evaluate and compare methods for the analysis of aggregated N-of-1 trials in different scenarios with carry-over and complex dependencies of treatment effects on covariates. For this, we simulate data of a series of N-of-1 trials for Chronic Nonspecific Low Back Pain based on assumed causal relationships parameterized by directed acyclic graphs. In addition to existing statistical methods such as regression models, Bayesian Networks, and G-estimation, we introduce a carry-over adjusted parametric model (COAPM). Results The results show that all evaluated existing models have a good performance when there is no carry-over and no treatment dependence. When there is carry-over, COAPM yields unbiased and more efficient estimates while all other methods show some bias in the estimation. When there is known treatment dependence, all approaches that are capable to model it yield unbiased estimates. Finally, the efficiency of all methods decreases slightly when there are missing values, and the bias in the estimates can also increase. Conclusions This study presents a systematic evaluation of existing and novel approaches for the statistical analysis of a series of N-of-1 trials. We derive practical recommendations which methods may be best in which scenarios.

Funder

Universität Potsdam

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing population-level trials as N-of-1 trials: An application to gait;Contemporary Clinical Trials Communications;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3