Abstract
Abstract
Background
Health experts including planners and policy-makers face complex decisions in diverse and constantly changing healthcare systems. Visual analytics may play a critical role in supporting analysis of complex healthcare data and decision-making. The purpose of this study was to examine the real-world experience that experts in mental healthcare planning have with visual analytics tools, investigate how well current visualisation techniques meet their needs, and suggest priorities for the future development of visual analytics tools of practical benefit to mental healthcare policy and decision-making.
Methods
Health expert experience was assessed by an online exploratory survey consisting of a mix of multiple choice and open-ended questions. Health experts were sampled from an international pool of policy-makers, health agency directors, and researchers with extensive and direct experience of using visual analytics tools for complex mental healthcare systems planning. We invited them to the survey, and the experts’ responses were analysed using statistical and text mining approaches.
Results
The forty respondents who took part in the study recognised the complexity of healthcare systems data, but had most experience with and preference for relatively simple and familiar visualisations such as bar charts, scatter plots, and geographical maps. Sixty-five percent rated visual analytics as important to their field for evidence-informed decision-making processes. Fifty-five percent indicated that more advanced visual analytics tools were needed for their data analysis, and 67.5% stated their willingness to learn new tools. This was reflected in text mining and qualitative synthesis of open-ended responses.
Conclusions
This exploratory research provides readers with the first self-report insight into expert experience with visual analytics in mental healthcare systems research and policy. In spite of the awareness of their importance for complex healthcare planning, the majority of experts use simple, readily available visualisation tools. We conclude that co-creation and co-development strategies will be required to support advanced visual analytics tools and skills, which will become essential in the future of healthcare.
Graphical abstract
Funder
Research School of Population Health, Australian National University
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Epidemiology
Reference35 articles.
1. Ola O, Sedig K. Beyond simple charts: design of visualizations for big health data. Online J Public Health Inform. 2016;8(3):e195.
2. Caban JJ, Gotz D. Visual analytics in healthcare–opportunities and research challenges. Journal of the American Medical Informatics Association. 2015;22(2):260–62.
3. Keim D, Andrienko G, Fekete J-D, Görg C, Kohlhammer J, Melançon G. Visual analytics: definition, process, and challenges. Berlin: Information visualization: Springer; 2008. p. 154–75.
4. Gibert K, García-Alonso C, Salvador-Carulla L. Integrating clinicians, knowledge and data: expert-based cooperative analysis in healthcare decision support. Health Res Policy Syst. 2010;8(1):28.
5. Preim B, Lawonn K. A survey of visual analytics for public health. Computer graphics forum: Eurographics; 2019;39(3):1–35.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献