Survey design and analysis considerations when utilizing misclassified sampling strata

Author:

Mitani Aya A.ORCID,Mercaldo Nathaniel D.,Haneuse Sebastien,Schildcrout Jonathan S.

Abstract

Abstract Background A large multi-center survey was conducted to understand patients’ perspectives on biobank study participation with particular focus on racial and ethnic minorities. In order to enrich the study sample with racial and ethnic minorities, disproportionate stratified sampling was implemented with strata defined by electronic health records (EHR) that are known to be inaccurate. We investigate the effect of sampling strata misclassification in complex survey design. Methods Under non-differential and differential misclassification in the sampling strata, we compare the validity and precision of three simple and common analysis approaches for settings in which the primary exposure is used to define the sampling strata. We also compare the precision gains/losses observed from using a disproportionate stratified sampling scheme compared to using a simple random sample under varying degrees of strata misclassification. Results Disproportionate stratified sampling can result in more efficient parameter estimates of the rare subgroups (race/ethnic minorities) in the sampling strata compared to simple random sampling. When sampling strata misclassification is non-differential with respect to the outcome, a design-agnostic analysis was preferred over model-based and design-based analyses. All methods yielded unbiased parameter estimates but standard error estimates were lowest from the design-agnostic analysis. However, when misclassification is differential, only the design-based method produced valid parameter estimates of the variables included in the sampling strata. Conclusions In complex survey design, when the interest is in making inference on rare subgroups, we recommend implementing disproportionate stratified sampling over simple random sampling even if the sampling strata are misclassified. If the misclassification is non-differential, we recommend a design-agnostic analysis. However, if the misclassification is differential, we recommend using design-based analyses.

Funder

National Heart, Lung, and Blood Institute

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3