Author:
Staudt Andreas,Freyer-Adam Jennis,Ittermann Till,Meyer Christian,Bischof Gallus,John Ulrich,Baumann Sophie
Abstract
Abstract
Background
Missing data are ubiquitous in randomised controlled trials. Although sensitivity analyses for different missing data mechanisms (missing at random vs. missing not at random) are widely recommended, they are rarely conducted in practice. The aim of the present study was to demonstrate sensitivity analyses for different assumptions regarding the missing data mechanism for randomised controlled trials using latent growth modelling (LGM).
Methods
Data from a randomised controlled brief alcohol intervention trial was used. The sample included 1646 adults (56% female; mean age = 31.0 years) from the general population who had received up to three individualized alcohol feedback letters or assessment-only. Follow-up interviews were conducted after 12 and 36 months via telephone. The main outcome for the analysis was change in alcohol use over time. A three-step LGM approach was used. First, evidence about the process that generated the missing data was accumulated by analysing the extent of missing values in both study conditions, missing data patterns, and baseline variables that predicted participation in the two follow-up assessments using logistic regression. Second, growth models were calculated to analyse intervention effects over time. These models assumed that data were missing at random and applied full-information maximum likelihood estimation. Third, the findings were safeguarded by incorporating model components to account for the possibility that data were missing not at random. For that purpose, Diggle-Kenward selection, Wu-Carroll shared parameter and pattern mixture models were implemented.
Results
Although the true data generating process remained unknown, the evidence was unequivocal: both the intervention and control group reduced their alcohol use over time, but no significant group differences emerged. There was no clear evidence for intervention efficacy, neither in the growth models that assumed the missing data to be at random nor those that assumed the missing data to be not at random.
Conclusion
The illustrated approach allows the assessment of how sensitive conclusions about the efficacy of an intervention are to different assumptions regarding the missing data mechanism. For researchers familiar with LGM, it is a valuable statistical supplement to safeguard their findings against the possibility of nonignorable missingness.
Trial registration
The PRINT trial was prospectively registered at the German Clinical Trials Register (DRKS00014274, date of registration: 12th March 2018).
Funder
Universitätsmedizin Greifswald
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Epidemiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献