Piloting an automated clinical trial eligibility surveillance and provider alert system based on artificial intelligence and standard data models

Author:

Meystre Stéphane M.,Heider Paul M.,Cates Andrew,Bastian Grace,Pittman Tara,Gentilin Stephanie,Kelechi Teresa J.

Abstract

Abstract Background To advance new therapies into clinical care, clinical trials must recruit enough participants. Yet, many trials fail to do so, leading to delays, early trial termination, and wasted resources. Under-enrolling trials make it impossible to draw conclusions about the efficacy of new therapies. An oft-cited reason for insufficient enrollment is lack of study team and provider awareness about patient eligibility. Automating clinical trial eligibility surveillance and study team and provider notification could offer a solution. Methods To address this need for an automated solution, we conducted an observational pilot study of our TAES (TriAl Eligibility Surveillance) system. We tested the hypothesis that an automated system based on natural language processing and machine learning algorithms could detect patients eligible for specific clinical trials by linking the information extracted from trial descriptions to the corresponding clinical information in the electronic health record (EHR). To evaluate the TAES information extraction and matching prototype (i.e., TAES prototype), we selected five open cardiovascular and cancer trials at the Medical University of South Carolina and created a new reference standard of 21,974 clinical text notes from a random selection of 400 patients (including at least 100 enrolled in the selected trials), with a small subset of 20 notes annotated in detail. We also developed a simple web interface for a new database that stores all trial eligibility criteria, corresponding clinical information, and trial-patient match characteristics using the Observational Medical Outcomes Partnership (OMOP) common data model. Finally, we investigated options for integrating an automated clinical trial eligibility system into the EHR and for notifying health care providers promptly of potential patient eligibility without interrupting their clinical workflow. Results Although the rapidly implemented TAES prototype achieved only moderate accuracy (recall up to 0.778; precision up to 1.000), it enabled us to assess options for integrating an automated system successfully into the clinical workflow at a healthcare system. Conclusions Once optimized, the TAES system could exponentially enhance identification of patients potentially eligible for clinical trials, while simultaneously decreasing the burden on research teams of manual EHR review. Through timely notifications, it could also raise physician awareness of patient eligibility for clinical trials.

Funder

Patient-Centered Outcomes Research Institute

National Center for Advancing Translational Sciences

SmartState Program, South Carolina, United States

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3