Adjusting for Berkson error in exposure in ordinary and conditional logistic regression and in Poisson regression

Author:

Oraby TamerORCID,Chakraborty Santanu,Sivaganesan Siva,Kincl Laurel,Richardson Lesley,McBride Mary,Siemiatycki Jack,Cardis Elisabeth,Krewski Daniel

Abstract

Abstract Background INTEROCC is a seven-country cohort study of occupational exposures and brain cancer risk, including occupational exposure to electromagnetic fields (EMF). In the absence of data on individual exposures, a Job Exposure Matrix (JEM) may be used to construct likely exposure scenarios in occupational settings. This tool was constructed using statistical summaries of exposure to EMF for various occupational categories for a comparable group of workers. Methods In this study, we use the Canadian data from INTEROCC to determine the best EMF exposure surrogate/estimate from three appropriately chosen surrogates from the JEM, along with a fourth surrogate based on Berkson error adjustments obtained via numerical approximation of the likelihood function. In this article, we examine the case in which exposures are gamma-distributed for each occupation in the JEM, as an alternative to the log-normal exposure distribution considered in a previous study conducted by our research team. We also study using those surrogates and the Berkson error adjustment in Poisson regression and conditional logistic regression. Results Simulations show that the introduced methods of Berkson error adjustment for non-stratified analyses provide accurate estimates of the risk of developing tumors in case of gamma exposure model. Alternatively, and under some technical assumptions, the arithmetic mean is the best surrogate when a gamma-distribution is used as an exposure model. Simulations also show that none of the present methods could provide an accurate estimate of the risk in case of stratified analyses. Conclusion While our previous study found the geometric mean to be the best exposure surrogate, the present study suggests that the best surrogate is dependent on the exposure model; the arithmetic means in case of gamma-exposure model and the geometric means in case of log-normal exposure model. However, we could present a better method of Berkson error adjustment for each of the two exposure models. Our results provide useful guidance on the application of JEMs for occupational exposure assessments, with adjustment for Berkson error.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3