A comparison of machine learning techniques for classification of HIV patients with antiretroviral therapy-induced mitochondrial toxicity from those without mitochondrial toxicity

Author:

Lee Jong Soo,Paintsil Elijah,Gopalakrishnan Vivek,Ghebremichael MusieORCID

Abstract

Abstract Background Antiretroviral therapy (ART) has significantly reduced HIV-related morbidity and mortality. However, therapeutic benefit of ART is often limited by delayed drug-associated toxicity. Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of ART regimens. NRTIs compete with endogenous deoxyribonucleotide triphosphates (dNTPs) in incorporation into elongating DNA chain resulting in their cytotoxic or antiviral effect. Thus, the efficacy of NRTIs could be affected by direct competition with endogenous dNTPs and/or feedback inhibition of their metabolic enzymes. In this paper, we assessed whether the levels of ribonucleotides (RN) and dNTP pool sizes can be used as biomarkers in distinguishing between HIV-infected patients with ART-induced mitochondrial toxicity and HIV-infected patients without toxicity. Methods We used data collected through a case-control study from 50 subjects. Cases were defined as HIV-infected individuals with clinical and/or laboratory evidence of mitochondrial toxicity. Each case was age, gender, and race matched with an HIV-positive without evidence of toxicity. We used a range of machine learning procedures to distinguish between patients with and without toxicity. Using resampling methods like Monte Carlo k-fold cross validation, we compared the accuracy of several machine learning algorithms applied to our data. We used the algorithm with highest classification accuracy rate in evaluating the diagnostic performance of 12 RN and 14 dNTP pool sizes as biomarkers of mitochondrial toxicity. Results We used eight classification algorithms to assess the diagnostic performance of RN and dNTP pool sizes distinguishing HIV patients with and without NRTI-associated mitochondrial toxicity. The algorithms resulted in cross-validated classification rates of 0.65–0.76 for dNTP and 0.72–0.83 for RN, following reduction of the dimensionality of the input data. The reduction of input variables improved the classification performance of the algorithms, with the most pronounced improvement for RN. Complex tree-based methods worked the best for both the deoxyribose dataset (Random Forest) and the ribose dataset (Classification Tree and AdaBoost), but it is worth noting that simple methods such as Linear Discriminant Analysis and Logistic Regression were very competitive in terms of classification performance. Conclusions Our finding of changes in RN and dNTP pools in participants with mitochondrial toxicity validates the importance of dNTP pools in mitochondrial function. Hence, levels of RN and dNTP pools can be used as biomarkers of ART-induced mitochondrial toxicity.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3