Author:
Kantidakis Georgios,Putter Hein,Lancia Carlo,Boer Jacob de,Braat Andries E.,Fiocco Marta
Abstract
Abstract
Background
Predicting survival of recipients after liver transplantation is regarded as one of the most important challenges in contemporary medicine. Hence, improving on current prediction models is of great interest.Nowadays, there is a strong discussion in the medical field about machine learning (ML) and whether it has greater potential than traditional regression models when dealing with complex data. Criticism to ML is related to unsuitable performance measures and lack of interpretability which is important for clinicians.
Methods
In this paper, ML techniques such as random forests and neural networks are applied to large data of 62294 patients from the United States with 97 predictors selected on clinical/statistical grounds, over more than 600, to predict survival from transplantation. Of particular interest is also the identification of potential risk factors. A comparison is performed between 3 different Cox models (with all variables, backward selection and LASSO) and 3 machine learning techniques: a random survival forest and 2 partial logistic artificial neural networks (PLANNs). For PLANNs, novel extensions to their original specification are tested. Emphasis is given on the advantages and pitfalls of each method and on the interpretability of the ML techniques.
Results
Well-established predictive measures are employed from the survival field (C-index, Brier score and Integrated Brier Score) and the strongest prognostic factors are identified for each model. Clinical endpoint is overall graft-survival defined as the time between transplantation and the date of graft-failure or death. The random survival forest shows slightly better predictive performance than Cox models based on the C-index. Neural networks show better performance than both Cox models and random survival forest based on the Integrated Brier Score at 10 years.
Conclusion
In this work, it is shown that machine learning techniques can be a useful tool for both prediction and interpretation in the survival context. From the ML techniques examined here, PLANN with 1 hidden layer predicts survival probabilities the most accurately, being as calibrated as the Cox model with all variables.
Trial registration
Retrospective data were provided by the Scientific Registry of Transplant Recipients under Data Use Agreement number 9477 for analysis of risk factors after liver transplantation.
Funder
European Organisation for Research and Treatment of Cancer
Universiteit Leiden
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Epidemiology
Reference51 articles.
1. Grinyó JM. Why is organ transplantation clinically important?Cold Spring Harb Perspect Med. 2013; 3(6). https://doi.org/10.1101/cshperspect.a014985.
2. Merion RM, Schaubel DE, Dykstra DM, Freeman RB, Port FK, Wolfe RA. The survival benefit of liver transplantation. Am J Transplant. 2005; 5(2):307–13. https://doi.org/10.1111/j.1600-6143.2004.00703.x.
3. Song X, Mitnitski A, Cox J, Rockwood K. Comparison of machine learning techniques with classical statistical models in predicting health outcomes. Stud Health Technol Inform. 2004; 107(Pt 1):736–40.
4. Deo RC. Machine learning in medicine. Circulation. 2015; 132(20):1920–30. https://doi.org/10.1161/CIRCULATIONAHA.115.001593.
5. Shailaja K, Seetharamulu B, Jabbar MA. Machine learning in healthcare: A review. In: Second International Conference on Electronics, Communication and Aerospace Technology (ICECA). Coimbatore: 2018. p. 910–4. https://doi.org/10.1109/ICECA.2018.8474918.
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献