Arrhythmia detection by the graph convolution network and a proposed structure for communication between cardiac leads

Author:

Andayeshgar Bahare,Abdali-Mohammadi Fardin,Sepahvand Majid,Almasi Afshin,Salari Nader

Abstract

AbstractOne of the most common causes of death worldwide is heart disease, including arrhythmia. Today, sciences such as artificial intelligence and medical statistics are looking for methods and models for correct and automatic diagnosis of cardiac arrhythmia. In pursuit of increasing the accuracy of automated methods, many studies have been conducted. However, in none of the previous articles, the relationship and structure between the heart leads have not been included in the model. It seems that the structure of ECG data can help develop the accuracy of arrhythmia detection. Therefore, in this study, a new structure of Electrocardiogram (ECG) data was introduced, and the Graph Convolution Network (GCN), which has the possibility of learning the structure, was used to develop the accuracy of cardiac arrhythmia diagnosis. Considering the relationship between the heart leads and clusters based on different ECG poles, a new structure was introduced. In this structure, the Mutual Information(MI) index was used to evaluate the relationship between the leads, and weight was given based on the poles of the leads. Weighted Mutual Information (WMI) matrices (new structure) were formed by R software. Finally, the 15-layer GCN network was adjusted by this structure and the arrhythmia of people was detected and classified by it. To evaluate the performance of the proposed new network, sensitivity, precision, specificity, accuracy, and confusion matrix indices were used. Also, the accuracy of GCN networks was compared by three different structures, including WMI, MI, and Identity. Chapman’s 12-lead ECG Dataset was used in this study. The results showed that the values of sensitivity, precision, specificity, and accuracy of the GCN-WMI network with 15 intermediate layers were equal to 98.74%, 99.08%, 99.97% & 99.82%, respectively. This new proposed network was more accurate than the Graph Convolution Network-Mutual Information (GCN-MI) with an accuracy equal to 99.71% and GCN-Id with an accuracy equal to 92.68%. Therefore, utilizing this network, the types of arrhythmia were recognized and classified. Also, the new network proposed by the Graph Convolution Network-Weighted Mutual Information (GCN-WMI) was more accurate than those conducted in other studies on the same data set (Chapman). Based on the obtained results, the structure proposed in this study increased the accuracy of cardiac arrhythmia diagnosis and classification on the Chapman data set. Achieving such accuracy for arrhythmia diagnosis is a great achievement in clinical sciences.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3