Modelling multiple time-scales with flexible parametric survival models

Author:

Batyrbekova Nurgul,Bower Hannah,Dickman Paul W.,Ravn Landtblom Anna,Hultcrantz Malin,Szulkin Robert,Lambert Paul C.,Andersson Therese M-L.

Abstract

Abstract Background There are situations when we need to model multiple time-scales in survival analysis. A usual approach in this setting would involve fitting Cox or Poisson models to a time-split dataset. However, this leads to large datasets and can be computationally intensive when model fitting, especially if interest lies in displaying how the estimated hazard rate or survival change along multiple time-scales continuously. Methods We propose to use flexible parametric survival models on the log hazard scale as an alternative method when modelling data with multiple time-scales. By choosing one of the time-scales as reference, and rewriting other time-scales as a function of this reference time-scale, users can avoid time-splitting of the data. Result Through case-studies we demonstrate the usefulness of this method and provide examples of graphical representations of estimated hazard rates and survival proportions. The model gives nearly identical results to using a Poisson model, without requiring time-splitting. Conclusion Flexible parametric survival models are a powerful tool for modelling multiple time-scales. This method does not require splitting the data into small time-intervals, and therefore saves time, helps avoid technological limitations and reduces room for error.

Funder

Vetenskapsrådet

Cancerfonden

Karolinska Institute

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3