Development, testing and use of data extraction forms in systematic reviews: a review of methodological guidance

Author:

Büchter Roland BrianORCID,Weise Alina,Pieper Dawid

Abstract

Abstract Background Data extraction forms link systematic reviews with primary research and provide the foundation for appraising, analysing, summarising and interpreting a body of evidence. This makes their development, pilot testing and use a crucial part of the systematic reviews process. Several studies have shown that data extraction errors are frequent in systematic reviews, especially regarding outcome data. Methods We reviewed guidance on the development and pilot testing of data extraction forms and the data extraction process. We reviewed four types of sources: 1) methodological handbooks of systematic review organisations (SRO); 2) textbooks on conducting systematic reviews; 3) method documents from health technology assessment (HTA) agencies and 4) journal articles. HTA documents were retrieved in February 2019 and database searches conducted in December 2019. One author extracted the recommendations and a second author checked them for accuracy. Results are presented descriptively. Results Our analysis includes recommendations from 25 documents: 4 SRO handbooks, 11 textbooks, 5 HTA method documents and 5 journal articles. Across these sources the most common recommendations on form development are to use customized or adapted standardised extraction forms (14/25); provide detailed instructions on their use (10/25); ensure clear and consistent coding and response options (9/25); plan in advance which data are needed (9/25); obtain additional data if required (8/25); and link multiple reports of the same study (8/25). The most frequent recommendations on piloting extractions forms are that forms should be piloted on a sample of studies (18/25); and that data extractors should be trained in the use of the forms (7/25). The most frequent recommendations on data extraction are that extraction should be conducted by at least two people (17/25); that independent parallel extraction should be used (11/25); and that procedures to resolve disagreements between data extractors should be in place (14/25). Conclusions Overall, our results suggest a lack of comprehensiveness of recommendations. This may be particularly problematic for less experienced reviewers. Limitations of our method are the scoping nature of the review and that we did not analyse internal documents of health technology agencies.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3